

#### **2023 MODELO B.1**

Responda las siguientes cuestiones:

- a) (0,5 puntos) Para el átomo de hidrógeno, calcule la energía del electrón en la segunda órbita, según el modelo atómico de Bohr. Justifique el significado del signo.
- b) (1 punto) Haciendo uso de los números cuánticos obtenga razonadamente el número máximo de subniveles, orbitales y electrones que hay en el tercer nivel energético de un átomo.
- c) (0,5 puntos) Escriba la configuración electrónica en el estado fundamental del elemento A (Z = 29) y de su ion más estable. Dato.  $R_H = 2,18 \cdot 10^{-18}$  J.

### 2022 JULIO COINCIDENTES A.1

Considere los elementos: A (Z = 9) y B (Z = 13):

- a) Escriba sus configuraciones electrónicas e identifique cada uno de ellos indicando grupo, período, símbolo y nombre.
- b) ¿Qué valores posibles de n, l,  $m_l$  y  $m_s$  tiene el último electrón del elemento A?
- c) Justifique cuáles son los iones más estables para A y B.
- d) De los iones más estables de A y B, razone cuál tiene menor radio.

#### 2022 JULIO A.1

Considere los elementos A (un halógeno cuyo anión contiene  $18\ e^-$ ), B (un metal alcalinotérreo del tercer periodo) y C (un elemento del grupo  $16\ que$  contiene  $16\ e^-$ ).

- a) Identifique los elementos A, B y C con su nombre y símbolo, y escriba la configuración electrónica de cada uno de ellos en su estado fundamental.
- b) Justifique si las siguientes afirmaciones son verdaderas o falsas:
- b.1. El elemento C es el que presenta una mayor energía de ionización.
- b.2. El elemento con mayor radio atómico es el B.

### **2022 MODELO A.1**

Considere los elementos A (Z = 11), B (Z = 15) y C (Z = 17).

- a) Escriba la configuración electrónica de cada elemento.
- b) Identifíquelos con su nombre, símbolo, grupo y periodo.
- c) Justifique cuál es el elemento que tiene menor energía de ionización.
- d) Formule y nombre un compuesto binario formado por los elementos B y C en su menor estado de oxidación, e indique el tipo de enlace que presenta.

### 2021 JULIO COINCIDENTES B.1

A las especies  $X^+, Y^{2-}$  y Z, les corresponden los números atómicos 11, 16 y 18, respectivamente.

- a) Identifique cada uno de los elementos X, Y y Z, indicando su nombre, símbolo, grupo y periodo.
- b) La primera y segunda energías de ionización para el átomo X son 495,8 y 4562  $kJmol^{-1}$ , respectivamente. Justifique la gran diferencia existente entre estos dos valores.
- c) Ordene los elementos X, Y, Z de mayor a menor tamaño. Justifique la respuesta.

# 2021 JULIO A.1

Responda las siguientes cuestiones:

- a) Considere los elementos: A  $(1s^22s^22p^63s^2)$ , B  $(1s^22s^22p^2)$  y C  $(1s^22s^22p^63s^23p^4)$ . Identifique cada elemento y especifique el grupo y el periodo al que pertenece.
- b) Considere los elementos D  $(1s^22s^1)$  y E  $(1s^22s^22p^6)$ . La primera energía de ionización de uno de ellos es 2080,7 kJ  $mol^{-1}$  y la del otro 520,2 kJ  $mol^{-1}$ . Justifique qué valor de la energía de ionización corresponde a cada uno.
- c) ¿Cuántos electrones desapareados existen en los átomos de Na, N y Ne?

### 2021 JUNIO COINCIDENTES A.1

Considere la configuración electrónica  $1s^22s^22p^6$ .

- a) Si perteneciese a un átomo neutro, identifíquelo indicando grupo, período, símbolo y nombre.
- b) Justifique qué dos cationes, uno con carga +1 y otro con carga +2, la presentan. Identifíquelos con nombre y símbolo.
- c) Justifique qué dos aniones, uno con carga -1 y otro con carga -2, la presentan. Identifiquelos con nombre y símbolo.

# 2021 JUNIO A.1

Dados los elementos A (Z=17), B (Z=35), C (Z=19) y D (Z=11):

- a) Escriba la configuración electrónica de cada uno de ellos.
- b) Justifique cuáles se encuentran en el mismo periodo.
- c) Razone si el elemento D (Z=11) presenta mayor afinidad electrónica que el A (Z=17).

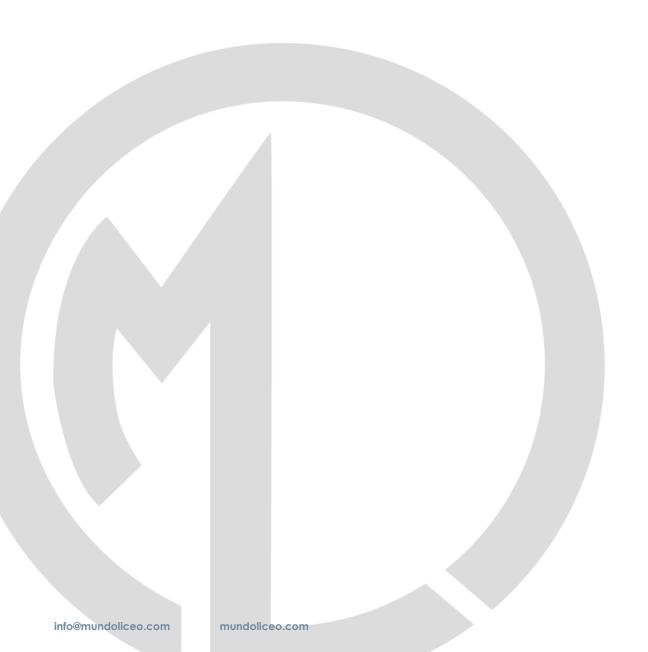
### **2021 MODELO A.1**

Considere los elementos cuyas configuraciones electrónicas son: A:  $1s^22s^22p^4$ ; B:  $1s^22s^2$ ; C:  $1s^22s^22p^63s^23p^2$ ; D:  $1s^22s^22p^63s^23p^5$ .

- a) Identifique el nombre y símbolo de cada elemento, e indique el grupo y periodo a los que pertenece.
- b) Para los elementos A y B, justifique cuál de ellos tiene mayor radio atómico.
- c) Indique el estado o estados de oxidación más probable(s) de cada elemento.
- d) Justifique qué elemento, C o D, tiene mayor energía de ionización.

# **2020 JULIO A.1**

Considere los elementos aluminio y magnesio.


- a) Escriba la configuración electrónica de cada elemento.
- b) Justifique qué elemento presenta mayor radio atómico.
- c) Explique si la segunda energía de ionización del aluminio es mayor, igual o menor que la primera.

info@mundoliceo.com mundoliceo.com 1





d) Sabiendo que la primera energía de ionización del magnesio es 738,1 kJ  $mol^{-1}$ , razone si es posible ionizar un mol de átomos de magnesio gaseosos con una energía de 500 kJ.

