

2023 MODELO A.4

A una distancia de 15 cm a la izquierda de una lente se sitúa un objeto, cuya imagen se forma 30 cm a la derecha de la lente.

- a) Calcule la distancia focal de la lente y el aumento lateral de la imagen.
- b) Una segunda lente, de distancia focal 12 cm, se coloca a la derecha de la primera. La imagen final formada por el sistema es, con respecto al objeto original, derecha y de tamaño triple. Determine la distancia entre la primera lente y la imagen final, y elabore el trazado de rayos correspondiente.

2022 JULIO COINCIDENTES A.4

Un sistema óptico está formado por dos lentes. La situada más a la izquierda es una lente convergente de distancia focal 20 cm, mientras que la segunda, situada a 100 cm de la primera, es una lente divergente de distancia focal 10 cm. Si situamos un objeto de altura 3 mm a 30 cm a la izquierda de la primera lente:

- a) Deduzca la posición y tamaño de la imagen obtenida por el sistema.
- b) Realice el correspondiente trazado de rayos de la formación de la imagen.

2022 JULIO A.4

Se sitúa un objeto de altura h a la izquierda de una lente convergente de distancia focal f'. La imagen del objeto que se forma es real, invertida y de igual tamaño.

- a) Determine, en función de f', las posiciones del objeto y de la imagen con respecto a la lente.
- b) Realice el correspondiente trazado de rayos para la formación de la imagen.

2022 JUNIO COINCIDENTES A.4

Para obtener una imagen aumentada de un objeto de 1 mm de altura se utilizan dos lentes convergentes A y B, de distancias focales 2 cm y 2,5 cm, respectivamente. El objeto se sitúa a 3 cm a la izquierda de la lente A, mientras que la lente B está colocada a la derecha de la lente A.

- a) Obtenga el tamaño de la imagen que forma la lente A, y determine la separación entre las lentes para que el sistema óptico forme una imagen final virtual e invertida de 5 mm.
- b) Realice el trazado de rayos correspondiente a la formación de la imagen por el sistema.

2022 JUNIO A.4

Dos lentes convergentes idénticas están separadas 16 cm. Cuando un objeto se sitúa a una cierta distancia a la izquierda de la primera lente, se encuentra que cada una de ellas opera con aumento igual a -1.

- a) Determine la potencia de las lentes.
- b) ¿Cuánto y hacia dónde debe desplazarse la segunda lente para lograr que la imagen del sistema se forme en el infinito?

2022 MODELO A.4

Se sitúa un objeto a la izquierda de una lente convergente, colocado verticalmente sobre el eje óptico. Determine el aumento lateral de la imagen y realice el correspondiente trazado de rayos para la formación de la imagen, si el objeto se sitúa a:

- a) Una distancia de un tercio de la distancia focal de la lente.
- b) Una distancia de tres veces la distancia focal de la lente.

2021 JULIO A.4

Sea un sistema óptico formado por dos lentes convergentes, una lente A de distancia focal f'A y otra B, situada 80 cm a la derecha de A, de distancia focal f'B = 30 cm. Un objeto de 5 cm de altura está situado 15 cm a la izquierda de la lente A.

- a) Si la imagen del objeto formada por el sistema de lentes aparece 75 cm a la derecha de la lente B, ¿cuánto vale la distancia focal de la lente A y el tamaño de la imagen formada por el sistema de lentes?
- b) ¿Dónde hay que situar el objeto a la izquierda de la lente A, para que el sistema de lentes forme la imagen en el infinito?

2021 JUNIO COINCIDENTES A.4

Un sistema óptico está formado por dos lentes convergentes A y B de distancias focales 4 cm y 7 cm respectivamente. La lente B está situada 25 cm a la derecha de A. Situamos un objeto de tamaño 2 mm a una distancia de 5 cm a la izquierda de la lente A.

- a) Calcule el tamaño y la posición de la imagen final.
- b) Realice el correspondiente trazado de rayos de la formación de la imagen.

2021 JUNIO A.4

Un objeto vertical de 2 mm de altura se encuentra situado 15 cm a la izquierda de una lente convergente de 40 dioptrías. Calcule:

- a) La posición y tamaño de la imagen que forma la lente.
- b) La posición de una segunda lente convergente de 6 cm de distancia focal, situada a la derecha de la primera lente, para que el sistema óptico genere una imagen en el infinito.

2021 MODELO A.4

Un sistema óptico está formado por dos lentes convergentes idénticas de distancia focal 20 cm, que están separadas una cierta distancia desconocida. Un objeto luminoso se sitúa 25 cm a la izquierda de la primera lente.

- a) Calcule la distancia que tendrá que haber entre las dos lentes para que la imagen del objeto que forma el sistema óptico se encuentre en el infinito.
- b) Realice el correspondiente trazado de rayos.

2020 SEPTIEMBRE A.4

Determine las posiciones donde debe colocarse un objeto real situado a la izquierda de una lente convergente de potencia 2,5 dioptrías para que el tamaño de la imagen formada por la lente sea:

a) Derecha y el doble que el tamaño del objeto.

info@mundoliceo.com mundoliceo.com 1

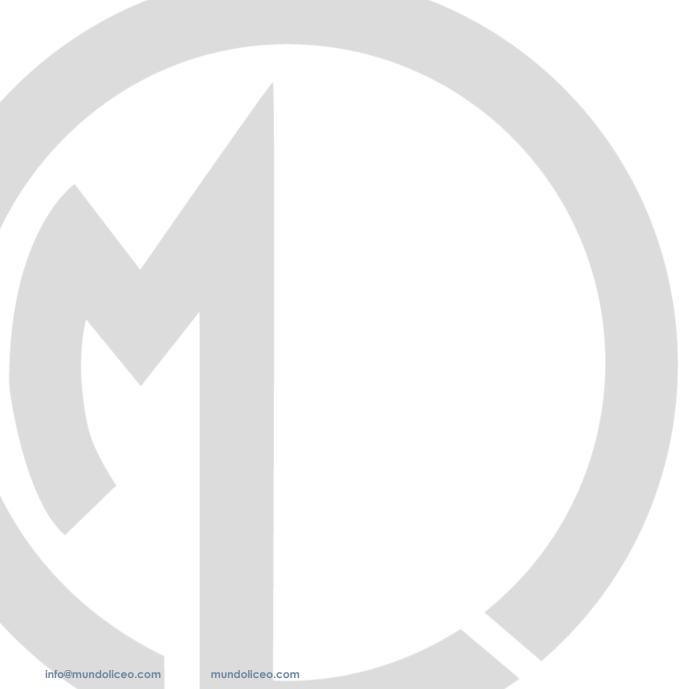
b) Invertida y la mitad del tamaño del objeto. Indique, en cada caso, la naturaleza de la imagen y realice el trazado de rayos correspondiente.

2020 JULIO COINCIDENTES B.4

Un objeto luminoso está situado a 6 metros de una pantalla. Una lente convergente, de distancia focal desconocida, situada entre el objeto y la pantalla, forma sobre la pantalla una imagen real, invertida y cuatro veces mayor que el objeto.

- a) Obtenga la distancia focal de la lente y la posición en la que se ha situado el objeto con respecto a la lente.
- b) Realice el trazado de rayos correspondiente.

2020 JULIO A.4


Un objeto está situado en una posición s_1 a la izquierda de una lente convergente de distancia focal 50 mm, de modo que forma una imagen real, invertida y de tamaño doble que el objeto. A continuación, el objeto se va moviendo hacia la lente hasta una posición s_2 en la que la imagen es virtual, derecha y de tamaño doble que la del objeto. Calcule:

- a) La posición s_1 inicial del objeto y la distancia inicial entre la imagen y la lente.
- b) La posición s_2 final del objeto y la distancia final entre la imagen y la lente.

2020 MODELO A.4

Un objeto real está situado 20 cm delante de una lente delgada planoconvexa de 10 dioptrías de potencia e índice de refracción n =

- a) Calcule el radio de curvatura de la cara esférica de la lente y la posición de la imagen.
- b) Si se utiliza la lente anterior como lupa, determine la posición en la que habría que situar el objeto para que la imagen formada fuera virtual y dos veces mayor.

2